
Automated Generation of Image Products for Mars
Exploration Rover Mission Tactical Operations

Doug Alexander

California Institute of Technology
Pasadena, CA, USA

Payam Zamani, Robert Deen, Paul Andres,

Jet Propulsion Laboratory
California Institute of Technology

Payam.Zamani@jpl.nasa.gov

Jet Propulsion Laboratory Helen Mortensen

DougIass.A.Alexander@jpl.nasa.gov Pasadena, CA, USA

Abstract -During the two years prior and the months
subsequent to the historic January, 2004 landing of the
Mars Exploration Rover (MER) mission's twin robotic
vehicles on the Mars surface, budgetary constraints and
growth in mission operations requirements compelled
developers of the hdER Ground Data System (GDS) at JPL
to innovate with robustness at cost-effective levels. One
contributing element, the Multimission Image Processing
Laboratory (MIPL), was tasked with processing
teleinetered MER camera data into digital image products
necessary for rover traverse planning within a j k e d
timeline. The design involved systematically transporting,
or "pipelining", digital image data between disparate
computer processes executed in parallel across rnultipIe
machine nodes. The result was an automated system of
event-driven product generating systems with suficient
versatility to meet expanding operations needs at
affordable costs.

This paper will discuss, f tom design to implementation,
the methodologies applied to MIPL's automated pipeline
processing as a "system of systems '' integrated with the
MER GDS. Overviews of the interconnected product
generating systems will also be provided with emphasis
on interdependencies, including those for a) geometric
rectijkation qf camera lens distortions, b) generation of
stereo disparity, e) derivation of 3-dimensional
coordinates in XYZ space, d) generation of uniJied terrain
meshes, e) camera-to-target ranging (distance) and J3
multi-image mosaicking. ,

Keywords:
product, data, pipeline, process, work flow.

MER, JPL, MIPL, Mars, rover, image,

the quality of navigational information embedded in the
images, and with such timeliness that the arduous efforts
inherent with analyzing the data and planning same day
rover commanding were minimized.

This paper presents a discussion of an automated end-
to-end system of data product generating systems designed
to accomodate the in situ nature of MER rover operations.
Developed by JPL's Multimission Image Processing
Laboratory (MIPL), the system involved an integration of
software programs that processed rover camera instrument
data into a variety of unique image data products critical
for rover operations traverse pIanning. Henceforth termed
the "Pipeline" for convenience in this paper, the system
was equally adept at processing non-image science
instrument data for analysis by the science instrument
teams. The system's name alludes to the notion that the
digital data was sequentially transported, or "pipelined",
from one component product generating system to the
next. The fundamentals of the Pipeline's event-driven
architecture and how they allowed for nearly complete
autonomy of the Pipeline operation will be discussed.

The Pipeline's resultant data products were many and
their descriptions are extensive. Discussion will touch
lightly on the application s o h a r e developed by MIPL for
each data product. Detailing the characteristics of each
product type is left as a topic for another paper [l], and
instead focus will be placed on discussing the
interdependencies between the element application
processes as they are laced in the Pipeline's fixmework.

2 Overview
1 Introduction

In January of 2004, NASA's Mars Exploration Rover
(MER) mission successfully landed the "Spirit" and
"Opporhmity" rovers on the Mars surface. The techniques
involved with remotely operating these mobile vehicles on
a distant planet was highly dependent on the ability of
mission operations persome1 to receive and analyze
imaging data that was acquired by each rover's set of
engineering and science camera instruments. Once the data
were telemetered to the Ground Data System (GDS) at the
Jet Propulsion Laboratory (JPL), they had to be processed
in such a way so as to optimize the extraction and enhance

The basic obiective of the Pipeline was to process
telemetered camera instrument data into image data
products, convert them into terrain maps, and subsequently
complete their delivery onto the GDS. The time erne for
product delivery had to be short. enough to sufficiently
allow for planning and uplinking of rover maneuver
commands by rover operations short-term planners, the
primary customers. Processing within this 'Yactical"
timeline, measured on the order of hours, satisfied the
requirements of two other types of operational customers:
a) science planners, who were tasked with targeting features
of interest found in the images for incorporation into short-
term rover traverse plans, and b) mobility analysts, who

were responsible for reviewing image data to determine
where the rover actually had moved in comparison to the
nominal traverse plan for the previous day. A fourth
customer, the long-term planners who analyzed multi-
image mosaics to plot the course of rover movement
several days in advance, operated within a more casual
“strategic” timeline measured in days.

Delivery of data products to operational users of the
GDS inside PL’s secured flight local area network (LAN)
was facilitated by a file server called the Operations Storage
Server (OSS). Configured as an immense directory
structure hierarchy, the OSS supplanted a customer
database on the GDS. Outside the LAN, where dispersed
elements of the science instrument teams awaited image
data while residing at home institutions, delivery was
made using a system called FEI designed at MIPL to
provide reliable and secure data transfer across the network.
See Section 5.6.3 for more discussion on this system.

3 System Environment
In the MER GDS configuration, the Pipeline was

tightly choreographed with a set of upstream processes
managed by JPL’s System Software (SSW) team and
various downstream customer entities. See Figure 1 for a
high level diagram of the Pipeline’s placement within the
context of the MER GDS.

Telemetry
Data

Products
W W)

Planning
I ’ I

Science t.cl

Figure 1. Data Flow in the GDS

3.1 System Hardware
The MER GDS hardware architecture utilized four

redundant Sun file servers (NFS) to service a number of
SuniSolaris or Intel-Linux workstations. At the time of
initial design, the target platform on the MER GDS for the
Pipeline system was unknown. Ultimately, the final
Pipeline computing engine was comprised of four dual-
processor Intel-Linux workstations per rover mission, each
having 1GB of RAM while running at clock speeds of
2.5Mhz.

3.2 Application Software
The Pipeline wouldn’t have anything to do if it

weren’t for the applications that it managed. These were the

programs that processed the data into a variety of unique
product types. They were in essence the systems that the
Pipeline integrated. The Pipeline’s architecture allowed
application programs to “plug in” with relative ease and
minimal configuration. There were several main classes of
applications: a) telemetry processing, b) derived image
production, c) terrain generation, d) format conversion, e)
data delivery, and f) image display.

In addition to the core application programs developed
by MIPL, two external programs had to be integrated to
support generation of products for the Mini-TES instrument
and 3-dimensional terrain meshes.

3.2.1 First Order Products
The MIPL application software supporting the MER

project drew a large portion of it’s heritage from the Mars
Pathfinder (MPF) and Mars Polar Lander (MFL) projects.
The telemetry processor (“telemproc”) was responsible for
digesting raw telemetry data into first order science and
operational data products, called Experiment Data Records
(EDRs). The teIemproc for the all rover engineering and
science instruments, with the exception of the Mini-TES
instrument, was developed in-house at MIPL and was a
direct descendant of the Polar Lander’s telemetry processor.
The Mini-TES telemproc was developed at Arizona State
University.

As shown in Figure 3, the Pipeline processing of
EDRs began at the point of interface with SSW processes,
which reconstructed the packetized rover instrument
telemetry data resident on JPL’s Telemetry Data
Subsystem (TDS) into data product (DP) file pairs.
Comprised of a binary instrument data file and an
associated metadata file, each DP was automatically
delivered by the SSW processes into an OSS directory
called the DP Queue, where they were gathered by the
Pipeline for immediate ingestion by the appropriate
telemproc.

3.2.2 Derived Products
There were as many as 1s derived image products,

called Reduced Data Records (RDR’s), generated for each
original EDR. A full accounting of each product type is
provided elsewhere [11, but the suite included product
applications such as radiometric correction, stereo
correlation and XYZ generation [2], range (distance)
information, robotic arm reachability [3], terrain slope
information, and a variety of multi-image mosaic map
projections. There were 14 applications written using the
‘‘VICAR” image processing system, all based on a common
library (Planetary Image Geometry, or PIG) which handled
all mission-specific details [4]. They were largely inherited
from previous missions such as MPF and MPL and will be
further reused in the future Phoenix and Mars Science
Laboratory (MSL) missions.

Terrain generation was handled by SUMMITT, a set
of terrain building software developed at JPL outside o f
MIPL. These applications converted the raw XYZ values

il into a unified terrain mesh used by rover planners for
traverse navigation [5] .

Figure 2 illustrates the data flow between the various
RDR generating processes, starting with the image EDRs.

Stereo
Disparity ‘

Reachability
Surface N O A ~
Surface Rough
Slope
Solar Energy

L 1 I

Figure 2. Simplified RDR Application Data Flow

The format conversion application was written in Java
using the Image VO mechanism. It converts any supported
format to any other, but was primarily used to convert
VICAR-format imagery coming from the RDR generation
programs to the standard PIanetary Data System (PDS)
format required by MER. The important point is that it
preserved metadata during the conversion process. It was
also used to make JPEG’s of the EDR’s for public
distribution.

A data delivery system (called FEI) and image display
system were also written at MIPL, but are generic services
used by many missions. See Sections 5.5.3 and 5.5.4,
respectively, for details.

Because all of these applications were developed at
different sites for different reasons, they wepe not consistent
in terms of calling sequences. Some took simple
parameters on the command line, others required input files
be constructed. Some required a single image input, some
required a stereo pair, and some required a whole collection
of inputs. Logging messages were printed and formatted
very differently. Most troublesome, the success/faiI status
returned by the applications were all different. Handling
these inconsistencies in the Pipeline turned out to be one of
the most challenging aspects of its development.

4 Performance Req w irem en t s
There were three major timing requirements levied by

the MER project on MIPL for operations and science
product generation:

The requirements called for EDR products to be
produced and saved onto the OSS file server
within 60 seconds of their arrival on the ground.
Actual performance varied from 6 to 12 seconds
depending on the instrument and size of data
product.
The requirement for production of RDRs, with the
exception ofthe terrain mesh, was 30 minutes after
the end of a telemetry downlink session. During
the MER extended mission, new RDRs were
introduced, such as solar energy and slope maps
[3] , and were exempt from meeting this
requirement.
The requirement for generation of the 3-D terrain
meshes was one hour from the end of the
downlink window. Actual performance varied and
occasionally, depending on the size and number of
meshes, this requirement was not met for the fmal
mesh. Generation of this product required manual
initiation since there was no automated method
for broadcasting an end-of-downlink event.

It should be noted that most of the bottleneck in
processing was due to the application programs as opposed
to the “glueware”. Still, the requirements had to be
addressed at the time of the Pipeline design so as not to
add to the latency already experienced at the application
processing level.

In addition to the timing requirements, there were
other requirements imposed by MIPL developers for
robustness:

Distribute all products to the MIPL catalog
residing outside the flight LAN within 10 seconds
of their creation.
Allow for multiple Pipelines to run in parallel,
independent of one another.
Provide ability to manually reconfigure process
loading across multiple workstations. Nominally,
four machines were used to support each rover
mission’s data processing.
Provide ability to halt or resume execution of the
Pipeline at any point in the processing.
Provide ability to log processing history and have
real time tracking of products.
Provide ability to perform special Pipeline
processing “privately” in user directories away
from the nomina1 OSS hierarchy.

5 Design and Implementation
In simple terms, the Pipeline was developed as a

single parameterized Bourne shell script that, once initiated
by command line at the shell prompt, spawned numerous
child process streams across GDS machine resources at the
control of the user. Each stream was a serial sequence of
specific processes serving a variety of purposes, such as
invocation of application software, PDS labeling of data
products, and delivery of products to specific directories on

the OSS by Sol and inskument type, as well as to external
customers outside the LAN.

5.1 Programming Language
Selection of the programming language for the

Pipeline development was predicated on a few key factors
over a yeas before the MER mission's landing of the rovers
in January of 2004. At that time, the MER project had yet
to determine the type of hardware to be used for the GDS,
and this prohibited MIPL developers from confidently
knowing which versions of various software would be
available. While the hardware resources were as yet
unknown, it was established that the MER GDS would
provide for a Unix-based environment. Since Unix is
prevalent on a wide range of computing systems, the
probability was high that the typical system user would
have some level of Unix experience. The power inherent in
the Unix language combined with user familiarity became a
prime reason for MlPL developers to build the Pipeline as a
Unix shell script. The selection was validated when the
MER project settled on Sun and Linux machines as the
GDS hardware of choice, with Unix running on both the
Solaris and Red Hat operating systems (O/S's),
respectively.

The important point is that Unix shell programming
languages are known entities and by scripting the Pipeline
under Unix shell, the groundwork was laid for easy
development of software tools that could supplement or
hook into the Pipeline during MER mission operations.
And since Unix shells ran on both the Solaris and Linux
OB'S of the GDS, deployment of the Pipeline was
expanded to multiple user environments.

The Bourne shell was chosen over Perl for a couple of
reasons: 1) the version of Perl available on the GDS was
incompatible with the version compiled on the MIPL
development system, 2) it was felt that scripting in Bourne
shell maintained the largest common denominator across
the collective knowledge base of the Pipeline developers
and operators, and 3) heritage from MPL, wherein the data
product generation system was developed under the
Bourne-again she11 (Bash). It's not to say that selecting
Perl as the programming language wouldn't have had its
merits as well.

5.2 Constraints
MER project policies governing the GDS constrained

the Pipeline in two areas of development. One issue was
the regulation that no Data Base Management System such
as Sybase, PostgreSQL or MySQL be allowed in the
critical path of MER mission operations, and the P ipehe
was part of that critical path. So instead of designing a
system that utilized a database for operational functions
such as auto-triggering of file YO between processes, an
area of design very familiar to MIPL developers as
demonstrated during past missions such as MPF and
MPL, an alternative strategy had to be adopted. The
second issue was a project policy that essentially prevented

Pipeline access to a Web server inside the flight LAN,
which restrained the distribution of the data product
tracking capability.

The resolutions to these issues within the Pipeline
design are discussed in subsequent sections in this paper.

5.3 Fundamental Strategy
The hndamental attribute of the design was the

ability for each process within a stream io be event-driven.
This was exemplified in two general forms within the
Pipeline: 1) testing file residence in temporary OSS
directories, and 2) testing file attributes by application
criteria. Returned status of file residence and criteria
testing drove automatic selection of subsequent actions
(ie., events) regarding the file's handling, and demonstrated
event-driven processing at the lowest level of the Pipeline
design.

5.3.1 File Residence Testing
Regarding the first form, in lieu of a relational

database's event-triggered capability, each process had built
into it a series of endless loops specifically calling the
Unix programs "1s" and ''find" to search directories on the
QSS for files. The temporary directories essentially served
as queues that hasbored the data for subsequent searching,
or polling, by other Pipeline processes. There were up to
eight types of directory queues:

Input Queue - Where all pending input files for a
particular application program were stored.
Input Buffer - An intermediate holding bin where
the sets of input files unique by SCLK were
moved one at a time from the Input Queue for
immediate ingestion by the application program.
Output Buffer - An intermediate holding bin that
received the single set of data processed by the
application program for subsequent actions by the
Pipeline based on file attributes.
PDS Queue - Received all data from the Output
Buffer destined for PDS labeling.
PDS Buffer - An intermediate hold bin that
received one set of data at a time for immediate
ingestion by the PDS labeling system.
Output Queue - Where the final PDS-labeled
versions of data products were received, either
horn the PDS labeling system or from the Output
Buffer, depending on the data product.
FEI Queue - Where data products destined for
external delivery outside the LAN were linked.
JEDI Queue - Where image EDRs destined for
image display were linked.

Additionally, there were other temporary directories
that supported contingency processing in the case that data
products were not generated, or had to be regenerated: 1) a
directory for backup of each data product's input file set,
and, 2) directories for file links in the case of failed
processing.

5.3.2 File Attribute Testing
Regarding the second form, in the cases of "found"

files, their characteristics were tested against criteria for
acceptance by the application process that resulted in one of
two status types: "success" or "failure".

An example was the need for the stereo correlation
process to ingest a pair of images, one acquired using the
left camera and the other acquired using the right camera.
So for any found image, criteria was designed to test for
that image's matching partner, and processing of the image
would not proceed until it's partner image was found.

5.4 Fiie Softlinking
Because of the breadth of the OSS directory structure

and the product delivery requirements imposed on the
Pipeline, file manipulation had to be quick and efficient.
This was achieved in the Unix environment by using
programs "ln 4' and "cp -s" to softlink data files fiom
directory to directory, minimizing the amount of file
copying. Also, file softlinking avoided problems with
accessing partially-written files, since the O/S provided for
s o g t l i creation to be an atomic process.

5.5 Paralllelized Approach
Satisfying the data product delivery requirements

necessitated a parallelized stream approach, implicit with
the concurrent spawning of multiple child process streams
at the outset of the Pipeline's invocation.

The parallelism was at the level of product and
process types, and was a function of the number of child
streams that could be engineered, with degrees of
performance realized through user-controlled distribution of
streams across available machine resources. A total of five
such streams were identified. Not all product types used all
streams, but most used at least three : 1) application
stream, 2) PDS labeling stream, and 3) product delivery
stream.

5.5.1 Application Stream
This process stream housed the command line call to

the application program, and endlessly polled the Input
Queue directory for any and all qualified input files. The
stream would move a single set of input tiles unique by
SCLK into the Input Buffer directory, from where the
application program ingested the data. Upon completion of
the processing, the stream deposited the resultant data
product into the Output Buffer directory. More fine-grained
parallelism could have been had with multiple application
streams invoked for the same data product type, and will be
a topic for the future.

5.5.2 PDS Labeling Stream
The labeling stream was responsible for calling a Java

transcoder program to extract a file's metadata and generate
a file-appended label that was compliant to PDS standards.
The stream endlessly polled the PDS Queue directory for

the candidate files, and moved them one at a time into the
PDS Buffer for immediate ingestion by the Java transcoder.
Upon completion of the processing, the labeled data
product was placed into the Output Queue directory.

5.5.3 Product Delivery Streams (2)
For data product delivery onto the OSS, a stream was

spawned to endlessly poll the Output Queue directory €or
the final PDS-labeled versions of the data products. The
stream called the Unix program "mv" to reassign the
address of a particular product's file pointer, so that each
found file was effectively moved to the file server instead of
copied. As part of the move of RDR products, the stream
incremented the version number in the product's filename
as necessary to avoid overwriting versions of the same
product already resident on the OSS.

For data products destined for delivery outside the
LAN, yet another process stream was launched to endlessly
searched the FEI Queue directory. Found files were then
ingested by the Pile Exchange hterface (FEI) system. FEI
was developed as a clienh'server application to transport
data fi-om a data center to client sites, utilizing Kerberos
authentication for security [7]. Using FEI programs, data
products were copied &om the LAN to an external server at
MIPL for rerouting to other external client sites.

5.5.4 Image Display Stream
This stream endlessly polled the JEDI Queue directory

for EDR image product softlinks. If found, the softlinked
file was ingested by client software called the Java EDR
Display Interface (JEDI) for image dispIay onto a user-
specified monitor. This stream was vital to quick visual
quality checking of the image ED&.

5.6 Error Handling and Messaging
As part of each stream, messages and returned error

print statements were generated at both the application
program level and the Pipeline glueware level into a single
logging text file. There was some inconsistency in the
manner by which the application programs returned low
level error status, so the Pipeline was engineered to auto-
categorize application error types into broad themes and
issue additional messages to simplify interpretation.

The log file was set in auto-scroll mode on the
workstation monitors for visual monitoring, but it's
verbosity made for difficulties in readily interpreting the
information in real time. Instead, the greater value found in
the log file came with the fact that it provided a permanent
record which was searchable at a more leisurely pace in
times of anamoly investigations.

5.7 Extensibility
The Unix-based scripting approach to the Pipeline

design provided for quick "plug-in" of new capabilities that
became necessary due to growing requirements during
mission operations.

One example of this Pipeline extensibility came
during the extended mission, when several new image
products were envisioned that would make operations
easier. As Spirit climbed into the Columbia Hills and
Opportunity descended into Endurance Crater, the long-
term planners realized they needed to be able to visualize
the local slope around each respective rover [3]. Power
constraints and dusty solar panels led to a need for a
product showing locations where solar energy would be
maximized. Spirit’s ailing right front wheel motivated a
product showing climbldescent. All of these were easily
implemented using combinations of existing or sightly
modified applications.

As another example, the science team used a hybrid
version of the Pipeline specially developed to d e
photometry cubes [6]. This entailed adding yet another
incompatible type of application - in this case programs
written in IDL (Interactive Data Language, from Research
Systems) and very different parameters for many of the
standard processing steps. These changes were also readily
incorporated in a relatively short time.

In both cases, integration of the new capabilities into
the Pipeline was fast and easy. Within the Pipeline script,
a11 application processes were spawned by the same
function, so it was simply a matter of adding the command
line call to the new application program as a new module
block in the code.

6 Operation
6.1 Startup/Shutdown

The Pipeline script was invoked in the Unix she11
though command line execution by a single human
operator. Processing behavior was controlled via
specification of command line parameters.

Although the Pipeline was designed to run
autonomously for long periods of time (many days),
procedurally, there were advantages to managing the
processing sessions in smaller increments. The resulting
policy was startuplshutdown of the Pipeline once per Sol,
which allowed the operator to maintain the size and number
of the temporary working files and directories under limits
where NFS performance became noticable.

6.2 Product Verification

6.2.1 GUI-based Product Tracking
Given the complexity of the Pipeline processing and

the quantity of data passing through on a daily basis, the
need for a means to visually track the progress of
processing at the product unit level became apparent. A
system caIled “Product Update Tracking Tool” (a.k.a.
PUTT) was created that presented the Pipeline pilot with a
web page which visually indicated (via color) the
completion status of each image data product.

PUTT was impIemented using a small C program and
a Perl script outside the Pipeline script and allowed for
quick assessment of each product’s status by: a) denoting
the completion state of each pertinent application program
in a graphicaI spreadsheet (GREEK for success, RED for
failure), b) in the cases of failures, isolating and extracting
the error statements from the application process logs, and
c) providing pop-up window viewability into the log
snippets for that product.

As the Pipeline started processing a new EDR, the
PUTT program created a small XML “token” file into a
temporary Sol directory on the OSS. This file was
uniquely named using Spacecraft Clock (SCLK) and
Spacecraft Identifier (SCID j. As the EDR matriculated
through various derived product application processes in
the Pipeline, the contents of the token file were updated
with status information that included: a) the name of the
application program, b) the return status of the program’s
execution, c) the time of program completion, and d) the
name of the program’s processing log file pertinent to the
EDR.

The Per1 script, running every few minutes, collected
all unique SCLK tokens from the current Sol and created
the web page representation of the status information. The
token file contents were concatenated into a single XML
file and then converted to HTML by passing the XML
through an XSLT filter. If errors were indicated in the
token file the script created a second web page containing
the appropriate section of the processing log file. Because
of project constraints limiting web servers on the flight
LAN, the HTML files were copied to a remote web serves
and were then viewable via a web browser.

6.2,2 Text-based Product Tracking
The use of temporary directory queues to collect file

softlinks allowed a simple tool to be written that provided
insight into the processing. It was not a GUI
representation, but textual, developed as a Perl script to
count the number of files in each directory and report as a
text listing every 10 seconds or so. Optional parameters
were added to control the listings by Sol.

6.3 Private Pipeline Mode
Nominally, the Pipeline placed its output data

products into the OSS directory structure, where customers
would “shop“ for standard data products in subdirectories
named by Sol, instrument, and product type. However,
there often arose the need to create non-standard data
products for special purposes at the request o f a customer.
These non-standard products could not be copied into the
OSS as it would affect all the other customers who were
expecting standard data. Therefore a ”private” mode of the
Pipeline was developed to deliver products into user-
specified directories without touching the OSS. This was
also extremely useful for MIPL analysts to test new
processing methods.

. 7 Conclusions
The real test of any system is how well it performs in

an actual operational setting. The Pipeline has been used
daily for over 400 Sols on two rovers, processing in excess
of 80,500 EDR's and YYYYYY RDRs as of this writing.
While there have been anomalies, none have been serious,
and we have met our requirements, The Pipeline has
proved itself to be robust and flexible, adapting to a
changing mission environment.

While the MER pipeline will not change significantly
at this point, it is expected that some derivative of it will
be used in future missions. Topics to investigate in the
fbture include more fme-grained parallelism, better product
tracking, use of a database (possibly optional) to help
manage processing queues, more sophisticated data-flow
options, and a more modular, plugin-style approach to
application integration.

References
[l] R.G. Deen, D.A. Alexander, J.N. Maki, "Mars Image
Products: Science Goes Operational", Proceedings of the
8th International Conference on Space Operations
(SpaceOps), Montreal, Canada, 2004.

[2] R.G. Deen, J.J. Lorre, "Seeing in Three Dimensions:
Correlation and Triangulation of Mars Exploration Rover
Imagery", submitted to 2085 IEEE International Conf. on
Systems, Man, and Cybernetics, Waikoloa, HI.

[3] C. Leger, R.G. Deen, R.G. Bonitz, "Remote Image
Analysis for Mars ExplorationRover Mobility and
Manipulation Operations", submitted to 2005 KEEE
International Conf. on Systems, Man, and Cybernetics,
Waikoloa, HI.

[4] R.G. Deen, "Cost Savings through Multimission
Code Reuse for Mars ImageProducts", Proceedings of 5th
International Symposium on Reducing the Cost of
Spacecraft Ground Systems and Operations, Pasadena, CA,
2003.

[5] J.R. Wright, A. Trebi-Ollenu, J. Morrison, "Terrain
Modelling for In-Situ Activity Planning and Rehearsal for
the Mars Exploration Rovers", submitted to 2005 IEEE
International Gonf. on Systems, Man, and Cybernetics,
Waikoloa, HI.

[6] J.M. Soderblom, J.F. Bell, R.E. Arvidson, J.R.
Johnson, M.J. Johnson, F.P. Seelos, "Mars Exploration
Rover Pancacm Photometric Data QUBs: Definition and
Example Uses", Eos Trans. AGU, Vol 85 No 47,2004.

Spacecraft Ground Systems and Operations, Pasadena, CA,
2003.

[7] T. Huang, "Component Architecture: The Software
Architecture for Mission Requirements", Proceedings of
5th International Symposium on Reducing the Cost of

CL-NOC

Notification of Clearance

Page 1 of 1

Notification: ",Send and Retqrnf Cancel 1

The following title has been cleared by the Document Review Services, Section 274, for public release,
presentation and/or printing in the open literature:

Automzited Generation of Iinage Products for Mars Exploration Rover Mission Tactical Operations

The clearance is CL#O5-0680. This clearance is issued for the Meeting Paper and is valid for U S . and foreign
release.

1. Please include the folIowing contractual acknowledgment, pre€erably at the end of the paper.

The research described in this paper was carried out at the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

Clearance issued by:

Mary Sue O'Brien
Document Review Services
Section 274

This email is your official Notification of Clearance; Document Review Services no longer issues hard copy
clearances.

Did You Know?

Caltech, not the author, is the copyright owner of any material produced as part ofthe author's employment at
JPL. The author does not have the power to transfer copyright.

If the publisher of your manuscript requires a transfer of copyright, please contact Document Review, ext. 4-
1141: for assistance if you have not already done so. For more information, see Transferring Copyright
Ownership: at http://dmie/cgi/doc-gw.pl?DocID=12009 in JPL Rules!

Page Charges andlor Reprints

If there are page charges for publishing your manuscript or costs for obtaining author's reprints, the JPL Library
will process the payments for you.

Once you have an order form or pro forma invoice from the publisher, please contact Barbara Amago, ext. 4-
3 183, or send your request to 11 1-1 13. The Library will need the clearance number and transfer of copyright
information from you before the page charges can be paid.

HTML

http ://edocreview/CL-NOC . aspx 3/14/2005

Jet Propulsion Labor,atory
California Institute of 1-echnology

4800 Oak Grove Drive
Pasadena, California 01 109.8099

(818) 354-4321

PL

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

Authorization for Public Release and Transfer of Copyright

The contribution entitled "Automated Generation of Image Products for
Mars Exp1arat;ion Rover Mission Tactical Operations" by Doug Alexander,
Payam Zamani, Robert Deen, Paul Andres, and Helen Mortensen, submitted
for publication in the proceedings of the IEEE 2005 International Conference
on Systems, M a n , and Cybernetics, has been cleared for public release by the
Jet Propulsion Laboratory, California Institute of Technology. The
copyright to the Contribution is transferred to: the Institute of
Electrical and Electronics Engineers, Incoxporated (the "IEEE") when the
Contribution is published by the above-named publisher with the following
reservation of rights :

This Contribution was produced by a member (or members) of the Jet
Propulsion Laboratory, California Institute of Technology, and is
considered a work-for-hire. In accordance with the contract between the
California Institute of Technology and the National Aeronautics and Space
Administration, the United States Government, and others acting on its
behalf, shall have, for Governmental purposes, a royalty-free,
nonexclusive, irrevocable, world-wide license to publish, distribute,
copy, exhibit and perform the work, in whole or in part, to authorize
others to do so, to reproduce the final published and/or electronic form
of the Contribution, to include the work on the NASA/JPL Technical
Reports Server web site, and to prepare derivative works including, but
not limited to, abstracts, lectures, lecture notes, press releases,
reviews, textk)ooks, reprint books, and translations.

I, as an author, am authorized
to sign for and on behalf of a l l
authors, and represent that the
information regarding this
Contribution, as provided in
this agreement, is correct.

S

(Sigriature) (Date)
Logistics & Technical Information

Division
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLfOGY

IEEE COPYRIGHT FORM

To ensure uniformity of treatment ;among all contributors, other forms may not be substituted for this form, nor may any wording of the form be changed. This
form is intended for original material submitted to the IEEE and must accompany any such material in order to be published by the IEEE. Please read the form
carefully and keep a copy for your files.

TITLE OF PAPER/ARTICLE/REPORT/PRESENTATION/SPEECH (hereinafter, “the Work”):

Automated Generation of Image Products for Mars Exploration Rover Mission Tactical Operations

COMPLETE LIST OF AUTHORS:

Doug Alexander, Payam Zamani, Robert Deen, Paul Andres, Helen Mortemen

IEEE PUBLICATION TITLE (Journal, Magazine, Conference, Book):

International Conference on Systems, Man and Cybernetics 2005

Cowrizht Transfer

The undersigned hereby assigns to the Institute of Electrical and Electronics Engineers, Incorporated (the “IEEE”) all rights under copyright that may exist in
and to the above Work, and any revised or expanded derivative works submitted to the IEEE by the undersigned based on the Work. The undersigned hereby
warrants that the Work is original and that he/she is the author of the Work; to the extent the Work incorporates text passages, figures, data or other material
fromi the works of others, the undersigned has obtained any necessary permissions. See reverse side for Retained Rights and other Terms and Conditions.

Author Responsibilitig

The IEEE distributes its techni
readership of those public
authorship, author res
advised especially of I
prior consent of other
given in work publish

ications is properly available to the

The undersigned represents that he/she has the power and authority to make and execute this assignment.
The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the event of a breach of any of the
warranties set forth above.
In the event the above work IS not accepted and published by the IEEE or is withdrawn by the author(s) before acceptance by the IEEE, the
foregoing copyright transfer shall become null and void and all materials embodying the Work submitted to the IEEE will be destroyed.
For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the others.

-
Date

(1)-
Author/Authorized Agent for Joint Authors

U.S. Government Emplovee Certification1 (where applicable)

This will certify that all authors of the Work are U.S. government employees and prepared the Work on a subject within the scope of their official duties. As
such, the Work is not subject to U.S. copyright protection.

Authorized Signature Date

(Authiors who are U.S. government employees should also sign signature line (1) above to enable the IEEE to claim and protect its copyright in international
jurisdictions.)

Crown Cowright Certification (where applicable)

This will certify that all authors of tlhe Work are employees of the British or British Commonwealth Government and prepared the Work in connection with their
official duties. As such, the Work IS subject to Crown Copyright and is not assigned to the IEEE as set forth in the first sentence of the Copyright Transfer
Section above. The undersigned acknowledges, however, that the IEEE has the right to publish, distribute and reprint the Work in all forms and media.

63)
A.uthorized Signature Date

(Authors who are British or British Commonwealth Government employees should also sign line (1) above to indicate their acceptance of all terms other than the
copyright transfer.)

rev. I21302

IEEE COPYRIGHTFORM (continued)

RETAINED RIGHTS/TERMS AND CONDITIONS

1.

2.

3.

4.

5 .

6.

Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.

Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or
derivative works for the author’s personal use or for company use, provided that the source and the IEEE copyright notice are
indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the
copies themselves are not offered for sale.

Authors/employers rnay make limited distribution of all or portions of the Work prior to publication if they inform the IEEE in
advance of the nature and extent of such limited distribution.

In the case of a Work performed under a US. Government contract or grant, the IEEE recognizes that the U.S. Government has
royalty-free permission to reproduce all or portions of the Work, and to authorize others to do so, for official U.S. Government
purposes only, if the contracdgrant so requires.

For all uses not covered by items 2, 3, and 4, authors/employers must request permission from the IEEE Intellectual Property
Rights office to reproduce or authorize the reproduction of the Work or material extracted verbatim from the Work, including
figures and tables.

Although authors arc granting third-party
requests for reprintin must handle all such
third-party requests

- IEE,E Copvrieht Ownershi@

It is the formal policy of the IEEE to own the copyrights to all copyrightable material in its technical publications and to the individual
contributions contained therein, in order to protect the interests of the IEEE, its authors and their employers, and, at the same time, t o
facillitate the appropriate re-use of this material by others. The IEEE distributes its technical publications throughout the world and does
so by various means such as hard copy, microfiche, microfilm, and electronic media. It also abstracts and may translate its publications,
and articles contained therein, for inclusion in various compendiums, collective works, databases and similar publications.

- AuthorlEmplover Riehts

If you are employed and prepared the Work on a subject within the scope of your employment, the copyright in the Work belongs to your
employer as a work-for-hire. In that case, the IEEE assumes that when you sign this Form, you are authorized to do so by your employer
and that your employer has consented to the transfer of copyright, to the representation and warranty of publication rights, and to all
other terms and conditions of this Form. If such authorization and consent ha:; not been given to you, an authorized representative of
your employer should sign this Form as the Author.

Reprint/Republication Policy

The IEEE requires that the consent of the first-named author and employer be sought as a condition to granting reprint or republication
righ:s to others or for permitting use of a Work for promotion or marketing purposes.

PLEASE DIRECT ALL QUESTIONS ABOUT THIS FORM TO:
Manager, IEEE Intellectual Property Rights Office, 445 Hoes Lane, P.O. BQX 1331, Piscataway, NJ 08855-1331.

Telephone +1 (732) 562-3966

LEAD JPL AUTHOR MAIL STOP
Douulass A. Alexander 168-319

EXTENSION
4431 6

--
I. ' DOCUMENT AND PROdECT IDENnFlCATlON - To bacompleted by AothorlOriginator

Approval is required for a// JPL scientific and technical information intended for unrestricted external release via print or electronic media.
See explanations on page 3 of this form and the Distribute Knowledge documents available through http://clmie.

0 Original

n Modified

.... I _.-. ...
0 Describes technology reported in

0 Provides more information for NTR No(@
0 Describes only science results, data, or theoretical discussions

Publications that describe technology (including software) require an NTR

New Technology Report (NTR) No.

audience suitabil s, and lack of bias.

ce, contact the Strategic Intellectual Assets

388

For presentations, documents, or other scientitWtechnica1 information to be externally published (including via electronic media}, enter
infortnafion-such as name, place, and date of conference; periodfcal or journal name; or book title and publisher--in the area be1ow.

Web Site: Preclearance URL (JPL afernal)
Postclearance URL (external)

[7 Brochure/Newsletter I7 JPL Publication Section 274 Editor (If applicable)
Journal Name

Meeting Title IEEE Conference of Svsterns, Man and Cvbernetics 2005

TITLE OTHER AUTHORS
Automated Generation of Image Products for Mars
Exp[owtion Rover Mission Tactical Operations

Payam Zarnani, Robert Deen, Paul Andres, Helen
Mo rte n sen

KEY WORDS FOR INDEXING (Separate items wifh commas)
MER, JPL, MIPL, Mars ExpIoration Rover, image, product, pipeline

Meeting Date October 2005 Location Waikoloa, Hawaji, USA
Sponsoring Society lEEE

0 BooklBook Chapter 0 Assigned JPL Task Private Venture Publisher

If your document will not be part of a journal, meeting, or book publication (including a web-based publicafion), can we post the cleared, final
version on the JPL worldwide Technical Report Server (TRS} and send it to the NASA Center for Aerospace Information (CASI)? Yes No
(For more information on TRSKASI, see hftp://techreports.jpl.nasa.gov and http://www.sti.nasa.gov.}

0 SECRET SECRET RD 0 CONFIDENTIAL n CONFIDENTIAL RD w UNCLASSIFIED

0 Prerneeting publication

Publication on meeting day

Postrneeting publication

Poster session

Handouts

CONFlDENTAL COMMERCIAL STI
(Check ap,,ropnare box be/o,#, and ,,,d,cate the d,srr,b,,t,o,, Cm,tar,on ,f spp,,cab,c,

TRADE SECRET
SBIR
COPYRIGHTED
COPYRIGHT 17 Publicly available

0 Limited until (date)
0 Limited until (date)

Limited until (date)

ADDITIONAL INFORMATION
(Check m r o W a t e d / s t h m hitarion De/ow and/or hmited until W e l , rf awilcable I

U.S. Government agencies and U.S. Government agency contractors only
NASA contractors and J.S Government only

0 NASA personnel and NASA contractors only
0 Available only with the approval of issuing office 0 NASA personnel only

U S. Government
agencies only

TRANSFERRED TO: (but subject to copying restricfions)

PAGE 1 JPL 1330-5 R 9/04 W

- .. .- . ~- - _ _ _ __ --
Ill. AVAlLABlilTY CATEGORY (cant.)- To be completed by Oocurnent RLview

’ ’

I I 1
PUBLICLY ’ AVA[LABLE STI

I Publicly available means it is unlimited and unclassified, is not export-controlled, does not contain confidential commercial data, and
has cleared any applicable patent application.

U A11 documents issued under the following contracVgrantlproject number may be processed as checked in Sections II and 111.
This blanket availability authorization is granted on (dafe)
The blanket release authorization granted on (dafe)
17 is RESCINDED - Future documents must have individual availability authorizations.

is MODIFIED - Limitations for all documents processed in the STI system under the blanket release should be changed to conform to blocks as

Check one: Contract Grant [7 Project Number

checked in Sections II and 111.

SIGNATURE MAIL STOP DATE

ONlTOWDIVfSION CHIEF REVIEW OF I THROUGH V

0 Approval for distributionas marked above Not approved

DATE NAME OF PROJECT OFFICER OR TECH. MONITOR MAIL STOP SIGNATURE

0 Public release is approved Public release not approved due to export control
0 Export-controlled limitation is approved 0 Export-controHed limitation (ITARIEAR marked in Section 111 is assigned to this document)

Export-controlled limitation is not applicable

USML CATEGORY CCL NUMBER, ECCN JPL EXPORT CONTROL ADMIN. REPRESENTATIVE SIGNATURE DATE
NUMBER (ITAR) NUMBER (EAR)

COMMENTS

OFFICE OF COMMUNICATIONS AND EDUCATION
GEhERAL COUNSEL
0 Budgelary/Cost Data
0 Venaor Data
0 Copyrights

I have determined that this publication:
DOES contain ITAWexport-controtled, confidential commercial
information, and/or discloses an invention and the appropriate
limitation is checked in Sections 111 and/or IV.

Does NOT contain ITARlexport-controlled, confidential commercial
information, nor does it disclose an invention and may be released as
indicated above.

USML CATEGORY CCL NUMBER, ECCN
NUMBER (ITAR) NUMBER (EAR)

ublic release is approved for U.S. and foreign distribution 0 Public release is not approved

A t f l 2
SIGNATURE MAIL STOP DATE

13 Obtained published version Date c] Obtained final JPL version Date

PAGE 2 JPL 1330-5 R 9 /04 W

See page 3 for instructions for completing this form.

Automated Generation of Image Products for Mars
Exploration Rover Mission Tactical Operations

Doug Alexander

California Institute of Technology
Pasadena, CA, USA

Payam Zamani, Robert Deen, Paul Andres,

Jet Propulsion Laboratory
California Institute of Technology

Payam.Zamani@jpl.nasa.gov

Jet Propulsion Laboratory Helen Mortensen

DougIass.A.Alexander@jpl.nasa.gov Pasadena, CA, USA

Abstract -During the two years prior and the months
subsequent to the historic January, 2004 landing of the
Mars Exploration Rover (MER) mission's twin robotic
vehicles on the Mars surface, budgetary constraints and
growth in mission operations requirements compelled
developers of the hdER Ground Data System (GDS) at JPL
to innovate with robustness at cost-effective levels. One
contributing element, the Multimission Image Processing
Laboratory (MIPL), was tasked with processing
teleinetered MER camera data into digital image products
necessary for rover traverse planning within a j k e d
timeline. The design involved systematically transporting,
or "pipelining", digital image data between disparate
computer processes executed in parallel across rnultipIe
machine nodes. The result was an automated system of
event-driven product generating systems with suficient
versatility to meet expanding operations needs at
affordable costs.

This paper will discuss, f tom design to implementation,
the methodologies applied to MIPL's automated pipeline
processing as a "system of systems '' integrated with the
MER GDS. Overviews of the interconnected product
generating systems will also be provided with emphasis
on interdependencies, including those for a) geometric
rectijkation qf camera lens distortions, b) generation of
stereo disparity, e) derivation of 3-dimensional
coordinates in XYZ space, d) generation of uniJied terrain
meshes, e) camera-to-target ranging (distance) and J3
multi-image mosaicking. ,

Keywords:
product, data, pipeline, process, work flow.

MER, JPL, MIPL, Mars, rover, image,

the quality of navigational information embedded in the
images, and with such timeliness that the arduous efforts
inherent with analyzing the data and planning same day
rover commanding were minimized.

This paper presents a discussion of an automated end-
to-end system of data product generating systems designed
to accomodate the in situ nature of MER rover operations.
Developed by JPL's Multimission Image Processing
Laboratory (MIPL), the system involved an integration of
software programs that processed rover camera instrument
data into a variety of unique image data products critical
for rover operations traverse pIanning. Henceforth termed
the "Pipeline" for convenience in this paper, the system
was equally adept at processing non-image science
instrument data for analysis by the science instrument
teams. The system's name alludes to the notion that the
digital data was sequentially transported, or "pipelined",
from one component product generating system to the
next. The fundamentals of the Pipeline's event-driven
architecture and how they allowed for nearly complete
autonomy of the Pipeline operation will be discussed.

The Pipeline's resultant data products were many and
their descriptions are extensive. Discussion will touch
lightly on the application s o h a r e developed by MIPL for
each data product. Detailing the characteristics of each
product type is left as a topic for another paper [l], and
instead focus will be placed on discussing the
interdependencies between the element application
processes as they are laced in the Pipeline's fixmework.

2 Overview
1 Introduction

In January of 2004, NASA's Mars Exploration Rover
(MER) mission successfully landed the "Spirit" and
"Opporhmity" rovers on the Mars surface. The techniques
involved with remotely operating these mobile vehicles on
a distant planet was highly dependent on the ability of
mission operations persome1 to receive and analyze
imaging data that was acquired by each rover's set of
engineering and science camera instruments. Once the data
were telemetered to the Ground Data System (GDS) at the
Jet Propulsion Laboratory (JPL), they had to be processed
in such a way so as to optimize the extraction and enhance

The basic obiective of the Pipeline was to process
telemetered camera instrument data into image data
products, convert them into terrain maps, and subsequently
complete their delivery onto the GDS. The time erne for
product delivery had to be short. enough to sufficiently
allow for planning and uplinking of rover maneuver
commands by rover operations short-term planners, the
primary customers. Processing within this 'Yactical"
timeline, measured on the order of hours, satisfied the
requirements of two other types of operational customers:
a) science planners, who were tasked with targeting features
of interest found in the images for incorporation into short-
term rover traverse plans, and b) mobility analysts, who

were responsible for reviewing image data to determine
where the rover actually had moved in comparison to the
nominal traverse plan for the previous day. A fourth
customer, the long-term planners who analyzed multi-
image mosaics to plot the course of rover movement
several days in advance, operated within a more casual
“strategic” timeline measured in days.

Delivery of data products to operational users of the
GDS inside PL’s secured flight local area network (LAN)
was facilitated by a file server called the Operations Storage
Server (OSS). Configured as an immense directory
structure hierarchy, the OSS supplanted a customer
database on the GDS. Outside the LAN, where dispersed
elements of the science instrument teams awaited image
data while residing at home institutions, delivery was
made using a system called FEI designed at MIPL to
provide reliable and secure data transfer across the network.
See Section 5.6.3 for more discussion on this system.

3 System Environment
In the MER GDS configuration, the Pipeline was

tightly choreographed with a set of upstream processes
managed by JPL’s System Software (SSW) team and
various downstream customer entities. See Figure 1 for a
high level diagram of the Pipeline’s placement within the
context of the MER GDS.

Telemetry
Data

Products
W W)

Planning
I ’ I

Science t.cl

Figure 1. Data Flow in the GDS

3.1 System Hardware
The MER GDS hardware architecture utilized four

redundant Sun file servers (NFS) to service a number of
SuniSolaris or Intel-Linux workstations. At the time of
initial design, the target platform on the MER GDS for the
Pipeline system was unknown. Ultimately, the final
Pipeline computing engine was comprised of four dual-
processor Intel-Linux workstations per rover mission, each
having 1GB of RAM while running at clock speeds of
2.5Mhz.

3.2 Application Software
The Pipeline wouldn’t have anything to do if it

weren’t for the applications that it managed. These were the

programs that processed the data into a variety of unique
product types. They were in essence the systems that the
Pipeline integrated. The Pipeline’s architecture allowed
application programs to “plug in” with relative ease and
minimal configuration. There were several main classes of
applications: a) telemetry processing, b) derived image
production, c) terrain generation, d) format conversion, e)
data delivery, and f) image display.

In addition to the core application programs developed
by MIPL, two external programs had to be integrated to
support generation of products for the Mini-TES instrument
and 3-dimensional terrain meshes.

3.2.1 First Order Products
The MIPL application software supporting the MER

project drew a large portion of it’s heritage from the Mars
Pathfinder (MPF) and Mars Polar Lander (MFL) projects.
The telemetry processor (“telemproc”) was responsible for
digesting raw telemetry data into first order science and
operational data products, called Experiment Data Records
(EDRs). The teIemproc for the all rover engineering and
science instruments, with the exception of the Mini-TES
instrument, was developed in-house at MIPL and was a
direct descendant of the Polar Lander’s telemetry processor.
The Mini-TES telemproc was developed at Arizona State
University.

As shown in Figure 3, the Pipeline processing of
EDRs began at the point of interface with SSW processes,
which reconstructed the packetized rover instrument
telemetry data resident on JPL’s Telemetry Data
Subsystem (TDS) into data product (DP) file pairs.
Comprised of a binary instrument data file and an
associated metadata file, each DP was automatically
delivered by the SSW processes into an OSS directory
called the DP Queue, where they were gathered by the
Pipeline for immediate ingestion by the appropriate
telemproc.

3.2.2 Derived Products
There were as many as 1s derived image products,

called Reduced Data Records (RDR’s), generated for each
original EDR. A full accounting of each product type is
provided elsewhere [11, but the suite included product
applications such as radiometric correction, stereo
correlation and XYZ generation [2], range (distance)
information, robotic arm reachability [3], terrain slope
information, and a variety of multi-image mosaic map
projections. There were 14 applications written using the
‘‘VICAR” image processing system, all based on a common
library (Planetary Image Geometry, or PIG) which handled
all mission-specific details [4]. They were largely inherited
from previous missions such as MPF and MPL and will be
further reused in the future Phoenix and Mars Science
Laboratory (MSL) missions.

Terrain generation was handled by SUMMITT, a set
of terrain building software developed at JPL outside o f
MIPL. These applications converted the raw XYZ values

il into a unified terrain mesh used by rover planners for
traverse navigation [5] .

Figure 2 illustrates the data flow between the various
RDR generating processes, starting with the image EDRs.

Stereo
Disparity ‘

Reachability
Surface N O A ~
Surface Rough
Slope
Solar Energy

L 1 I

Figure 2. Simplified RDR Application Data Flow

The format conversion application was written in Java
using the Image VO mechanism. It converts any supported
format to any other, but was primarily used to convert
VICAR-format imagery coming from the RDR generation
programs to the standard PIanetary Data System (PDS)
format required by MER. The important point is that it
preserved metadata during the conversion process. It was
also used to make JPEG’s of the EDR’s for public
distribution.

A data delivery system (called FEI) and image display
system were also written at MIPL, but are generic services
used by many missions. See Sections 5.5.3 and 5.5.4,
respectively, for details.

Because all of these applications were developed at
different sites for different reasons, they wepe not consistent
in terms of calling sequences. Some took simple
parameters on the command line, others required input files
be constructed. Some required a single image input, some
required a stereo pair, and some required a whole collection
of inputs. Logging messages were printed and formatted
very differently. Most troublesome, the success/faiI status
returned by the applications were all different. Handling
these inconsistencies in the Pipeline turned out to be one of
the most challenging aspects of its development.

4 Performance Req w irem en t s
There were three major timing requirements levied by

the MER project on MIPL for operations and science
product generation:

The requirements called for EDR products to be
produced and saved onto the OSS file server
within 60 seconds of their arrival on the ground.
Actual performance varied from 6 to 12 seconds
depending on the instrument and size of data
product.
The requirement for production of RDRs, with the
exception ofthe terrain mesh, was 30 minutes after
the end of a telemetry downlink session. During
the MER extended mission, new RDRs were
introduced, such as solar energy and slope maps
[3] , and were exempt from meeting this
requirement.
The requirement for generation of the 3-D terrain
meshes was one hour from the end of the
downlink window. Actual performance varied and
occasionally, depending on the size and number of
meshes, this requirement was not met for the fmal
mesh. Generation of this product required manual
initiation since there was no automated method
for broadcasting an end-of-downlink event.

It should be noted that most of the bottleneck in
processing was due to the application programs as opposed
to the “glueware”. Still, the requirements had to be
addressed at the time of the Pipeline design so as not to
add to the latency already experienced at the application
processing level.

In addition to the timing requirements, there were
other requirements imposed by MIPL developers for
robustness:

Distribute all products to the MIPL catalog
residing outside the flight LAN within 10 seconds
of their creation.
Allow for multiple Pipelines to run in parallel,
independent of one another.
Provide ability to manually reconfigure process
loading across multiple workstations. Nominally,
four machines were used to support each rover
mission’s data processing.
Provide ability to halt or resume execution of the
Pipeline at any point in the processing.
Provide ability to log processing history and have
real time tracking of products.
Provide ability to perform special Pipeline
processing “privately” in user directories away
from the nomina1 OSS hierarchy.

5 Design and Implementation
In simple terms, the Pipeline was developed as a

single parameterized Bourne shell script that, once initiated
by command line at the shell prompt, spawned numerous
child process streams across GDS machine resources at the
control of the user. Each stream was a serial sequence of
specific processes serving a variety of purposes, such as
invocation of application software, PDS labeling of data
products, and delivery of products to specific directories on

the OSS by Sol and inskument type, as well as to external
customers outside the LAN.

5.1 Programming Language
Selection of the programming language for the

Pipeline development was predicated on a few key factors
over a yeas before the MER mission's landing of the rovers
in January of 2004. At that time, the MER project had yet
to determine the type of hardware to be used for the GDS,
and this prohibited MIPL developers from confidently
knowing which versions of various software would be
available. While the hardware resources were as yet
unknown, it was established that the MER GDS would
provide for a Unix-based environment. Since Unix is
prevalent on a wide range of computing systems, the
probability was high that the typical system user would
have some level of Unix experience. The power inherent in
the Unix language combined with user familiarity became a
prime reason for MlPL developers to build the Pipeline as a
Unix shell script. The selection was validated when the
MER project settled on Sun and Linux machines as the
GDS hardware of choice, with Unix running on both the
Solaris and Red Hat operating systems (O/S's),
respectively.

The important point is that Unix shell programming
languages are known entities and by scripting the Pipeline
under Unix shell, the groundwork was laid for easy
development of software tools that could supplement or
hook into the Pipeline during MER mission operations.
And since Unix shells ran on both the Solaris and Linux
OB'S of the GDS, deployment of the Pipeline was
expanded to multiple user environments.

The Bourne shell was chosen over Perl for a couple of
reasons: 1) the version of Perl available on the GDS was
incompatible with the version compiled on the MIPL
development system, 2) it was felt that scripting in Bourne
shell maintained the largest common denominator across
the collective knowledge base of the Pipeline developers
and operators, and 3) heritage from MPL, wherein the data
product generation system was developed under the
Bourne-again she11 (Bash). It's not to say that selecting
Perl as the programming language wouldn't have had its
merits as well.

5.2 Constraints
MER project policies governing the GDS constrained

the Pipeline in two areas of development. One issue was
the regulation that no Data Base Management System such
as Sybase, PostgreSQL or MySQL be allowed in the
critical path of MER mission operations, and the P ipehe
was part of that critical path. So instead of designing a
system that utilized a database for operational functions
such as auto-triggering of file YO between processes, an
area of design very familiar to MIPL developers as
demonstrated during past missions such as MPF and
MPL, an alternative strategy had to be adopted. The
second issue was a project policy that essentially prevented

Pipeline access to a Web server inside the flight LAN,
which restrained the distribution of the data product
tracking capability.

The resolutions to these issues within the Pipeline
design are discussed in subsequent sections in this paper.

5.3 Fundamental Strategy
The hndamental attribute of the design was the

ability for each process within a stream io be event-driven.
This was exemplified in two general forms within the
Pipeline: 1) testing file residence in temporary OSS
directories, and 2) testing file attributes by application
criteria. Returned status of file residence and criteria
testing drove automatic selection of subsequent actions
(ie., events) regarding the file's handling, and demonstrated
event-driven processing at the lowest level of the Pipeline
design.

5.3.1 File Residence Testing
Regarding the first form, in lieu of a relational

database's event-triggered capability, each process had built
into it a series of endless loops specifically calling the
Unix programs "1s" and ''find" to search directories on the
QSS for files. The temporary directories essentially served
as queues that hasbored the data for subsequent searching,
or polling, by other Pipeline processes. There were up to
eight types of directory queues:

Input Queue - Where all pending input files for a
particular application program were stored.
Input Buffer - An intermediate holding bin where
the sets of input files unique by SCLK were
moved one at a time from the Input Queue for
immediate ingestion by the application program.
Output Buffer - An intermediate holding bin that
received the single set of data processed by the
application program for subsequent actions by the
Pipeline based on file attributes.
PDS Queue - Received all data from the Output
Buffer destined for PDS labeling.
PDS Buffer - An intermediate hold bin that
received one set of data at a time for immediate
ingestion by the PDS labeling system.
Output Queue - Where the final PDS-labeled
versions of data products were received, either
horn the PDS labeling system or from the Output
Buffer, depending on the data product.
FEI Queue - Where data products destined for
external delivery outside the LAN were linked.
JEDI Queue - Where image EDRs destined for
image display were linked.

Additionally, there were other temporary directories
that supported contingency processing in the case that data
products were not generated, or had to be regenerated: 1) a
directory for backup of each data product's input file set,
and, 2) directories for file links in the case of failed
processing.

5.3.2 File Attribute Testing
Regarding the second form, in the cases of "found"

files, their characteristics were tested against criteria for
acceptance by the application process that resulted in one of
two status types: "success" or "failure".

An example was the need for the stereo correlation
process to ingest a pair of images, one acquired using the
left camera and the other acquired using the right camera.
So for any found image, criteria was designed to test for
that image's matching partner, and processing of the image
would not proceed until it's partner image was found.

5.4 Fiie Softlinking
Because of the breadth of the OSS directory structure

and the product delivery requirements imposed on the
Pipeline, file manipulation had to be quick and efficient.
This was achieved in the Unix environment by using
programs "ln 4' and "cp -s" to softlink data files fiom
directory to directory, minimizing the amount of file
copying. Also, file softlinking avoided problems with
accessing partially-written files, since the O/S provided for
s o g t l i creation to be an atomic process.

5.5 Paralllelized Approach
Satisfying the data product delivery requirements

necessitated a parallelized stream approach, implicit with
the concurrent spawning of multiple child process streams
at the outset of the Pipeline's invocation.

The parallelism was at the level of product and
process types, and was a function of the number of child
streams that could be engineered, with degrees of
performance realized through user-controlled distribution of
streams across available machine resources. A total of five
such streams were identified. Not all product types used all
streams, but most used at least three : 1) application
stream, 2) PDS labeling stream, and 3) product delivery
stream.

5.5.1 Application Stream
This process stream housed the command line call to

the application program, and endlessly polled the Input
Queue directory for any and all qualified input files. The
stream would move a single set of input tiles unique by
SCLK into the Input Buffer directory, from where the
application program ingested the data. Upon completion of
the processing, the stream deposited the resultant data
product into the Output Buffer directory. More fine-grained
parallelism could have been had with multiple application
streams invoked for the same data product type, and will be
a topic for the future.

5.5.2 PDS Labeling Stream
The labeling stream was responsible for calling a Java

transcoder program to extract a file's metadata and generate
a file-appended label that was compliant to PDS standards.
The stream endlessly polled the PDS Queue directory for

the candidate files, and moved them one at a time into the
PDS Buffer for immediate ingestion by the Java transcoder.
Upon completion of the processing, the labeled data
product was placed into the Output Queue directory.

5.5.3 Product Delivery Streams (2)
For data product delivery onto the OSS, a stream was

spawned to endlessly poll the Output Queue directory €or
the final PDS-labeled versions of the data products. The
stream called the Unix program "mv" to reassign the
address of a particular product's file pointer, so that each
found file was effectively moved to the file server instead of
copied. As part of the move of RDR products, the stream
incremented the version number in the product's filename
as necessary to avoid overwriting versions of the same
product already resident on the OSS.

For data products destined for delivery outside the
LAN, yet another process stream was launched to endlessly
searched the FEI Queue directory. Found files were then
ingested by the Pile Exchange hterface (FEI) system. FEI
was developed as a clienh'server application to transport
data fi-om a data center to client sites, utilizing Kerberos
authentication for security [7]. Using FEI programs, data
products were copied &om the LAN to an external server at
MIPL for rerouting to other external client sites.

5.5.4 Image Display Stream
This stream endlessly polled the JEDI Queue directory

for EDR image product softlinks. If found, the softlinked
file was ingested by client software called the Java EDR
Display Interface (JEDI) for image dispIay onto a user-
specified monitor. This stream was vital to quick visual
quality checking of the image ED&.

5.6 Error Handling and Messaging
As part of each stream, messages and returned error

print statements were generated at both the application
program level and the Pipeline glueware level into a single
logging text file. There was some inconsistency in the
manner by which the application programs returned low
level error status, so the Pipeline was engineered to auto-
categorize application error types into broad themes and
issue additional messages to simplify interpretation.

The log file was set in auto-scroll mode on the
workstation monitors for visual monitoring, but it's
verbosity made for difficulties in readily interpreting the
information in real time. Instead, the greater value found in
the log file came with the fact that it provided a permanent
record which was searchable at a more leisurely pace in
times of anamoly investigations.

5.7 Extensibility
The Unix-based scripting approach to the Pipeline

design provided for quick "plug-in" of new capabilities that
became necessary due to growing requirements during
mission operations.

One example of this Pipeline extensibility came
during the extended mission, when several new image
products were envisioned that would make operations
easier. As Spirit climbed into the Columbia Hills and
Opportunity descended into Endurance Crater, the long-
term planners realized they needed to be able to visualize
the local slope around each respective rover [3]. Power
constraints and dusty solar panels led to a need for a
product showing locations where solar energy would be
maximized. Spirit’s ailing right front wheel motivated a
product showing climbldescent. All of these were easily
implemented using combinations of existing or sightly
modified applications.

As another example, the science team used a hybrid
version of the Pipeline specially developed to d e
photometry cubes [6]. This entailed adding yet another
incompatible type of application - in this case programs
written in IDL (Interactive Data Language, from Research
Systems) and very different parameters for many of the
standard processing steps. These changes were also readily
incorporated in a relatively short time.

In both cases, integration of the new capabilities into
the Pipeline was fast and easy. Within the Pipeline script,
a11 application processes were spawned by the same
function, so it was simply a matter of adding the command
line call to the new application program as a new module
block in the code.

6 Operation
6.1 Startup/Shutdown

The Pipeline script was invoked in the Unix she11
though command line execution by a single human
operator. Processing behavior was controlled via
specification of command line parameters.

Although the Pipeline was designed to run
autonomously for long periods of time (many days),
procedurally, there were advantages to managing the
processing sessions in smaller increments. The resulting
policy was startuplshutdown of the Pipeline once per Sol,
which allowed the operator to maintain the size and number
of the temporary working files and directories under limits
where NFS performance became noticable.

6.2 Product Verification

6.2.1 GUI-based Product Tracking
Given the complexity of the Pipeline processing and

the quantity of data passing through on a daily basis, the
need for a means to visually track the progress of
processing at the product unit level became apparent. A
system caIled “Product Update Tracking Tool” (a.k.a.
PUTT) was created that presented the Pipeline pilot with a
web page which visually indicated (via color) the
completion status of each image data product.

PUTT was impIemented using a small C program and
a Perl script outside the Pipeline script and allowed for
quick assessment of each product’s status by: a) denoting
the completion state of each pertinent application program
in a graphicaI spreadsheet (GREEK for success, RED for
failure), b) in the cases of failures, isolating and extracting
the error statements from the application process logs, and
c) providing pop-up window viewability into the log
snippets for that product.

As the Pipeline started processing a new EDR, the
PUTT program created a small XML “token” file into a
temporary Sol directory on the OSS. This file was
uniquely named using Spacecraft Clock (SCLK) and
Spacecraft Identifier (SCID j. As the EDR matriculated
through various derived product application processes in
the Pipeline, the contents of the token file were updated
with status information that included: a) the name of the
application program, b) the return status of the program’s
execution, c) the time of program completion, and d) the
name of the program’s processing log file pertinent to the
EDR.

The Per1 script, running every few minutes, collected
all unique SCLK tokens from the current Sol and created
the web page representation of the status information. The
token file contents were concatenated into a single XML
file and then converted to HTML by passing the XML
through an XSLT filter. If errors were indicated in the
token file the script created a second web page containing
the appropriate section of the processing log file. Because
of project constraints limiting web servers on the flight
LAN, the HTML files were copied to a remote web serves
and were then viewable via a web browser.

6.2,2 Text-based Product Tracking
The use of temporary directory queues to collect file

softlinks allowed a simple tool to be written that provided
insight into the processing. It was not a GUI
representation, but textual, developed as a Perl script to
count the number of files in each directory and report as a
text listing every 10 seconds or so. Optional parameters
were added to control the listings by Sol.

6.3 Private Pipeline Mode
Nominally, the Pipeline placed its output data

products into the OSS directory structure, where customers
would “shop“ for standard data products in subdirectories
named by Sol, instrument, and product type. However,
there often arose the need to create non-standard data
products for special purposes at the request o f a customer.
These non-standard products could not be copied into the
OSS as it would affect all the other customers who were
expecting standard data. Therefore a ”private” mode of the
Pipeline was developed to deliver products into user-
specified directories without touching the OSS. This was
also extremely useful for MIPL analysts to test new
processing methods.

. 7 Conclusions
The real test of any system is how well it performs in

an actual operational setting. The Pipeline has been used
daily for over 400 Sols on two rovers, processing in excess
of 80,500 EDR's and YYYYYY RDRs as of this writing.
While there have been anomalies, none have been serious,
and we have met our requirements, The Pipeline has
proved itself to be robust and flexible, adapting to a
changing mission environment.

While the MER pipeline will not change significantly
at this point, it is expected that some derivative of it will
be used in future missions. Topics to investigate in the
fbture include more fme-grained parallelism, better product
tracking, use of a database (possibly optional) to help
manage processing queues, more sophisticated data-flow
options, and a more modular, plugin-style approach to
application integration.

References
[l] R.G. Deen, D.A. Alexander, J.N. Maki, "Mars Image
Products: Science Goes Operational", Proceedings of the
8th International Conference on Space Operations
(SpaceOps), Montreal, Canada, 2004.

[2] R.G. Deen, J.J. Lorre, "Seeing in Three Dimensions:
Correlation and Triangulation of Mars Exploration Rover
Imagery", submitted to 2085 IEEE International Conf. on
Systems, Man, and Cybernetics, Waikoloa, HI.

[3] C. Leger, R.G. Deen, R.G. Bonitz, "Remote Image
Analysis for Mars ExplorationRover Mobility and
Manipulation Operations", submitted to 2005 KEEE
International Conf. on Systems, Man, and Cybernetics,
Waikoloa, HI.

[4] R.G. Deen, "Cost Savings through Multimission
Code Reuse for Mars ImageProducts", Proceedings of 5th
International Symposium on Reducing the Cost of
Spacecraft Ground Systems and Operations, Pasadena, CA,
2003.

[5] J.R. Wright, A. Trebi-Ollenu, J. Morrison, "Terrain
Modelling for In-Situ Activity Planning and Rehearsal for
the Mars Exploration Rovers", submitted to 2005 IEEE
International Gonf. on Systems, Man, and Cybernetics,
Waikoloa, HI.

[6] J.M. Soderblom, J.F. Bell, R.E. Arvidson, J.R.
Johnson, M.J. Johnson, F.P. Seelos, "Mars Exploration
Rover Pancacm Photometric Data QUBs: Definition and
Example Uses", Eos Trans. AGU, Vol 85 No 47,2004.

Spacecraft Ground Systems and Operations, Pasadena, CA,
2003.

[7] T. Huang, "Component Architecture: The Software
Architecture for Mission Requirements", Proceedings of
5th International Symposium on Reducing the Cost of

Automated Generation of Image Products for Mars
Exploration Rover Mission Tactical Operations

Doug Alexander
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA, USA

Douglass. A.Alexander@jpl.nasa.gov

Abstract - During the period 01 development prior to the
January, 2004 landing of the Mars Exploration Rover
(MER?) pmject 's twin robotic vehicles on Mars, mission
operations personnel recognized the need for timely
generation and delivery of camera image products for
rover traverse plannilag purposes. The task was assigned
to the Multirnission Image Processing Laboratory (MPL?),
an element of the Jet Propulsion Laboraiory (JPL). This
paper will report on the ensuing design fhat involved
sequentially transporting, or "pip elin ing ", teleine fered
MER camera image data Between dispuuate computer
processes executed in parallel acruss multiple machine
resources. Discussion will touch on the fundamental
aspects of the system's event-driven processing strategy
that provided autonomy in its operation. Overviews of the
interconnecting process streams will be provided. In the
end, it will be apparent to the reader that MPL designed
a system of image product generating systems built with
robustness to meet rover planning requirements and with
suflcimnt versatility to meet expanding operations needs in
short order.

Keywords:
product, data, pipeline, process, work flow.

MER, IPL, MIPL, Mars, rover, image,

1 Introduction
In January of 2004, NASA's Mars Exploration Rover

(MER) mission successfully landed the "Spirit" and
"Opportunity" rovers on the Mars surface. The techniques
involved with remotely operating these mobile vehicles on
a distant planet were highly dependent on the abiIity of
mission operations personnel to receive and analyze
imaging data that was acquired by each rover's set of
engineering and science camera instruments. Once the data
were telemetered to the Ground Data System (GDS) at the
Jet Propulsion Laboratory (PL), they had to be processed
in such a way so as to optimize the extraction of
navigational information embedded in the images, and
with such timeliness that the arduous efforts inherent with
analyzing the data and planning same day rover
commanding were minimized.

This paper presents a discussion of an automated end-
to-end system of data product generating systems designed
to accomodate the in situ nature of MER rover operations.
Developed by JPL's Multimission Image Processing

Payam Zamani, Robert Deen, Paul Andres,
Helen Mortensen

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA, USA
Payam.Zamani@jpl.nasa.gov

Laboratory (MIPL), the system involved an integration of
software programs that processed rover camera instrument
data into a variety of unique image data products critical
for rover operations traverse planning. Henceforth termed
the "Pipeline" for convenience in this paper, the system
was equally adept at processing non-image science
instrument data for analysis by the science instrument
teams. The system's name alludes to the notion that the
digital data was sequentially transported, or "pipelined",
from one component product generating system to the
next. The fundamentals of the Pipeline's event-driven
architecture and how they allowed for nearly complete
autonomy of the Pipeline operation wilI be discussed.

The Pipeline's resultant data products were many and
their descriptions are extensive. Discussion will touch
lightly on the application software developed by MIPL for
each data product. Detailing the characteristics of each
product type is left as a topic for another paper [l], and
instead focus will be placed on discussing the
interdependencies between the element application
processes as they are laced in the Pipeline's framework.

2 Overview
The basic objective of the Pipeline was to process

telemetered camera instrument data into image data
products, convert them into terrain maps, and subsequently
complete their delivery onto the GDS. The time Erne for
product delivery had to be short enough to sufficiently
allow for planning and uplinking of rover maneuver
commands by rover operations short-term planners, the
primary customers. Processing within this "tactical"
timeline, measured on the order of hours, satisfied the
requirements of two other types of operational customers:
a) science planners, who were tasked with targeting features
of interest found in the images for incorporation into short-
term rover traverse plans, and b) mobility analysts, who
were responsible for reviewing image data to determine
where the rover actually had moved in comparison to the
nominal traverse plan for the previous day. A fourth
customer, the long-term planners who analyzed multi-
image mosaics to plot the course of rover movement
several. days in advance, operated within a more casual
"strategic" timeline measured in days.

Delivery of data products to operational users o f the
GDS inside JPL’s secured flight local area network (LAN)
was facilitated by a file server called the Operations Storage
Server {OSS). Configured as an immense direciory
structure hierarchy, the OSS supplanted a customer
database on the GDS. Outside the LAN, where dispersed
elements o f the science instrument teams awaited image
data while residing at home institutions, delivery was
made using a system called FEI designed at MIPL to
provide secure data transfer across the network. See
Section 5.5.3 for more discussion of this system.

3 System Environment
In the MER GDS configuration, the Pipeline was

tightly choreographed with a set of upstream processes
managed by JPL’s System Software (SSW) team and
various downstream customer entities. See Figure 1 for a
high level diagram of the Pipeline’s placement within the
context of the MER GDS.

Rover

Telemetry

Products
(SSW)

Tactical
Planning

Strategic
Planning

Figure 1. Data Flow in the GDS

3.1 System Hardware
The MER GDS hardware architecture utilized four

redundant Sun file servers (NFS) to service a number o f
SudSolaris or Intel-Linux workstations. At the time of
initial design, the target platform on the MER GDS for the
Pipeline system was unknown. Ultimately, the final
Pipeline computing engine was comprised of four dual-
processor Intel-Linux workstations per rover mission, each
having 1GB of RAM while running at clock speeds of
2.5Mhz.

3.2 Application Software
The Pipeline wouldn’t have anything to do if it

weren‘t for the applications that it managed. These were the
programs that processed the data into a variety of unique
product types. They were in essence the systems that the
Pipeline integrated. The Pipeline’s architecture allowed
application programs to “plug in” with relative ease and
minimal configuration. There were several main classes of
applications: a) telemetry processing, b) derived image

production, c) terrain generation, d) format conversion, e)
data delivery, and f) image display.

In addition to the core application programs developed
by MIPL, two external programs had to be integrated to
support generation of products for the Mini-TES instrument
and 3-dimensional terrain meshes.

3.2.1 First Order Products
The MIPL application software supporting the MER

project drew a large portion o f i t ’s heritage from the Mars
Pathfinder (MPF) and Mars Polar Lander (MPL) projects.
The telemetry processor (“telemproc”) was responsible for
digesting raw telemetry data into first order science and
operational data products, called Experiment Data Records
(EDRs). The telemproc for the all rover engineering and
science instruments, with the exception of the Mini-TES
instrument, was developed in-house at MIPL and was a
direct descendant of the Polar Lander’s telemetry processor.
The Mini-TES telemproc was developed at Arizona State
University.

As shown in Figure 1, the Pipeline processing o f
EDRs began at the point of interface with SSW processes,
which reconstructed the packetized rover instrument
telemetry data resident on JPL’s Telemetry Data
Subsystem (TDS) into data product (DP) file pairs.
Comprised of a binary instrument data file and an
associated metadata file, each DP was automatically
delivered by the SSW processes into an OSS directory
called the DP Queue, where they were gathered by the
Pipeline for immediate ingestion by the appropriate
telemproc.

3.2.2 Derived Products
There were as many as 18 derived image products,

called Reduced Data Records (RDR’s), generated for each
original EDR. A full accounting of each product type i s
provided elsewhere [l], but the suite included product
applications such as radiometric correction, stereo
correlation and X Y Z generation [2] , range (distance)
information, robotic arm reachability [3], terrain slope
information, and a variety of multi-image mosaic map
projections. There were 14 applications written using the
‘VICAR” image processing system, all based on a common
library (Planetary Image Geometry, or PIG) which handled
all mission-specific details [4]. They were largely inherited
from previous missions such as MPF and MPL and will be
further reused in the future Phoenix and Mars Science
Laboratory (MSL) missions.

Terrain generation was handled by SUMMITT, a set
o f terrain building software developed at P L outside of
MIPL. These applications converted the raw XYZ values
into a unified terrain mesh used by rover planners for
traverse navigation [SI.

Figure 2 illustrates the data flow between the various
RDR generating processes, starting with the image EDRs.

] Reachability I

Stereo
Disparity

Range

Surface Normal
Surface Rough
Slope
Solar Energy

Figure 2. Simplified RDR Application Data Flow

The format conversion application was written in Java
using the Image I/O mechanism. It converted any
supported format to any other, but was primarily used to
convert VICAR-format imagery coming from the RDR
generation programs to the standard Planetary Data System
(PDS) format required by MER. The important point is
that it preserved metadata during the conversion process. It
was also used to make JPEG’s of the EDR’s for public
distribution.

The aforementioned FEI data delivery system and an
image display system were also developed at MIPL, but are
generic services used by many missions. See Sections
5.5.3 and 5.5.4, respectively, for details.

Because all of these applications were developed at
different sites for different reasons, they were not consistent
in terms of calling sequences. Some took simple
parameters on the command line, others required input files
be constructed. Some required a single image input, some
required a stereo pair, and some required a whole collection
of inputs. Logging messages were printed and formatted
very differently. Most troublesome, the successifail status
returned by the applications were all different. Handling
these inconsistencies in the Pipeline turned out to be one of
the most challenging aspects of its development.

4 Performance Requirements
There were three major timing requirements levied by

the MER project on MIPL for operations and science
product generation:

EDR products had to be generated and saved onto
the OSS file server within 60 seconds of their
arrival on the ground. Actual performance varied
from 6 to 12 seconds depending on the instrument
and size of data product.

. RDR products, with the exception of the terrain
mesh, had to be produced within 30 minutes after
the end of a telemetry downlink session. During
the MER extended mission, new RDRs were
introduced, such as solar energy and slope maps
[3] , and were exempt from meeting this
requirement.
Generation of the 3-D terrain meshes had to
completed within one hour from the end of the
downlink window. Actual performance varied and
occasionally, depending on the size and number of
meshes, this requirement was not met for the final
mesh. Generation o f this product required manual
initiation since there was no automated method
for broadcasting an end-of-downhk event.

It should be noted that most of the bottleneck in
processing was due to the application programs as opposed
to the “glueware”. Still, the requirements had to be
addressed at the time of the Pipeline design so as not to
add to the latency already experienced at the application
processing level.

In addition to the timing requirements, there were
other requirements imposed by MIPL developers for
robustness :

. Distribute all products to the MIPL catalog
residing outside the flight LAN within 10 seconds
of their creation.
AIlow €or multiple Pipelines to run in parallel,
independent of one another.
Provide ability to manually reconfigure process
loading across multiple workstations. Nominally,
four machines were used to support each rover
mission’s data processing.
Provide ability to halt or resume execution of the
Pipeline at any point in the processing.
Provide ability to log processing history and have
real time tracking of products.
Provide ability to perform special Pipeline
processing “privately” in user directories away
from the nominal OSS hierarchy.

5 Design and Implementation
In simple terms, the Pipeline was developed as a

single parameterized Bourne shell script that, once initiated
by command line at the shell prompt, spawned numerous
child process streams across GDS machine resources at the
control of the user. Each stream was a serial sequence of
specific processes serving a variety of purposes, such as
invocation of application software, PDS labeling of data
products, and delivery of products to specific directories on
the OSS by Sol and instrument type, as well as to external
customers outside the LAN.

5.1 Programming Language
Selection of the programming language for the

Pipeline development was predicated on a few key factors

over a year before the MER mission's landing of the rovers
in January of 2004. At that time, the MER project had yet
to determine the type of hardware to be used for the GDS,
and this prohibited MIPL developers from confidently
knowing which versions of various software would be
available. While the hardware resources were as yet
unknown, it was established that the MER GDS would
provide for a Unix-based environment. Since Unix is
prevalent on a wide range of computing systems, the
probability was high that the typical system user would
have some level of Unix experience. The power inherent in
the Unix language combined with user familiarity became a
prime reason for MIPL developers to build the Pipeline as a
Unix shell script. The selection was validated when the
MER project settled on Sun and Linux machines as the
GDS hardware of choice, with Unix running on both the
Solaris and Red Hat operating systems (O/S's),
respectively.

The important point is that Unix shell programming
languages are known entities and by scripting the Pipeline
under Unix shell, the groundwork was laid for easy
development of software tools that could supplement or
hook into the Pipeline during MER mission operations.
And since Unix shells ran on both the Sotaris and Linux
OiS's of the GDS, deployment of the Pipeline was
expanded to multiple user environments.

The Bourne shell was chosen over Perl for the
following reasons: I) the version of Per1 available on the
GDS was incompatible with the version compiled on the
hilIPL development system, 2) it was felt that scripting in
Bourne shell maintained the largest common denominator
across the collective knowledge base of the Pipeline
developers and operators, and 3) heritage from MPL,
wherein the data product generation system was developed
under the Bourne-again shell (Bash). It's not to say that
selecting Perl as the programming language wouldn't have
had its merits as well.

5.2 Constraints
MER project policies governing the GDS constrained

the Pipeline in two areas of development. One issue was
the regulation that no Data Base Management System such
as Sybase, PostgreSQL or MySQL be allowed in the
critical path of MER mission operations, and the Pipeline
was part of that critical path. So instead of designing a
system that utilized a database for operational hc t ions
such as auto-triggering of file IiO between processes, an
area of design very familiar to MIPL developers as
demonstrated during past missions such as MPF and
MPL, an alternative strategy had to be adopted. The
second issue was a project policy that essentially prevented
Pipeline access to a Web server inside the flight LAN,
which restrained the distribution of the data product
tracking capabiIity.

The resolutions to these issues within the Pipeline
design are discussed in subsequent sections in this paper.

5.3 Fundamental Strategy
The fundamental attribute of the design was the

ability for each process within a stream to be event-driven.
This was exemplified in two general forms within the
Pipeline: 1) testing file residence in temporary OSS
directories, and 2) testing file attributes by application
criteria. Returned status of file residence and criteria
testing drove automatic selection of subsequent actions
(ie., events) regarding the file's handling, and demonstrated
event-driven processing at the lowest level of the Pipeline
design.

5.3.1 File Residence Testing
Regarding the first form, in lieu of a relational

database's event-triggered capability, each process had built
into it a series of endless loops specifically calling the
Unix programs "1s" and "find" to search directories on the
OSS for files. The temporary directories essentially served
as queues that harbored the data for subsequent searching,
or polling, by other Pipeline processes. There were up to
eight types of directory queues:

Input Queue - Where all pending input files for a
particular application program were stored.
Input Buffer - An intermediate holding bin where
the sets of input files unique by SCLK were
moved one at a time from the Input Queue for
immediate ingestion by the application program.
Output 33uffer - An intermediate holding bin that
received the single set of data processed by the
application program for subsequent actions by the
Pipeline based on file attributes.
PDS Queue - Received all data from the Output
Buffer destined for PDS labeling.
PDS Buffer - An intermediate holding bin that
received one set of data at a time for immediate
ingestion by the PDS labeling system.
Output Queue - Where the final PDS-labeled
versions of data products were received, either
from the PDS labeling system or from the Output
Buffer, depending on the data product.
FEI Queue - Where data products destined for
external delivery outside the LAN were linked.
JEDI Queue - Where image EDRs destined for
image display were linked.

Additionally, there were other temporary directories
that supported contingency processing in the case that data
products were not generated, or had to be regenerated 1) a
directory for backup of each data product's input file set,
and, 2) directories for file links in the case of failed
processing.

5.3.2 File Attribute Testing
Regarding the second form, in the cases of "found

files, their characteristics were tested against criteria for
acceptance by the application process that resulted in one of
two status types: "success" or "failure".

An example was ihe need for the stereo correlation
process to ingest a pair of images, one acquired using the
left camera and the other acquired using the right camera.
So €or any found image, criteria was designed to test for
that image’s matching partner, and processing of the image
would not proceed until its partner image was found.

5.4 File Softlinking
Because of the breadth of the OSS directory structure

and the product delivery requirements imposed on the
Pipeline, file manipulation had to be quick and efficient.
This was achieved in the Unix environment by using
programs “ln -s” and “cp -s” to softlink data files from
directory to directory, minimizing the amount of file
copying. Also, file softlinking avoided problems with
accessing partially-written files, since the @IS provided for
softIink creation to be an atomic process.

5.5 Parallelized Approach
Satisfying the data product delivery requirements

necessitated a parallelized stream approach, implicit with
the concurrent spawning of multiple child process streams
at the outset of the Pipeline’s invocation.

The parallelism was at the level of product and
process types, and was a function o f the number o f child
streams that could be engineered, with degrees of
performance realized through user-controlled distribution of
streams across avaiIable machine resources. A total of five
such streams were identified. Not all product types used all
streams, but most used at least three : 1) application
stream, 2) PDS labeling stream, and 3) product delivery
stream.

5.5.1 Application Stream
This process stream housed the command line call to

the application program, and endlessly polled the Input
Queue directory for any and all qualified input files. The
stream would move a single set of input files unique by
SCLK into the Input Buffer directory, from where the
application program ingested the data. Upon completion of
the processing, the stream deposited the resultant data
product into the Output Buffer directory. More fine-grained
parallelism could have been had with multiple application
streams invoked for the same data product type, and wiIl. be
a topic for the future.

5.5.2 PDS Labeling Stream
The labeling stream was responsible for calling a Java

transcoder program to extract a file’s metadata and generate
a file-appended label that was compliant to PDS standards.
The stream endlessly polled the PDS Queue directory for
the candidate files, and moved them one at a time into the
PDS Buffer for immediate ingestion by the Java transcoder.
Upon completion of the processing, the labeled data
product was placed into the Output Queue directory.

5.5.3 Product Delivery Streams (2)
For data product delivery onto the OSS, a stream was

spawned to endlessly poll the Output Queue directory for
the finat PDS-labeled versions of the data products. The
stream called the Unix program “mv“ to reassign the
address of a particular product’s file pointer, so that each
found file was effectively moved to the file server instead of
copied. As part o f the move of RDR products, the stream
incremented the version number in the product’s filename
as necessary to avoid overwriting versions of the same
product already resident on the OSS.

For data products destined for delivery outside the
LAN, yet another process stream was launched to endlessly
searched the FEI Queue directory. Found files were then
ingested by the File Exchange Interface (FEI) system. FEI
was developed as a client‘server application to transport
data from a data center to client sites, utilizing Kerberos
authentication for security [7]. Using FEI programs, data
products were copied fi-om the LAN to an external server at
MIPL for rerouting to other external client sites.

5.5.4 Image Display Stream
This stream endlessIy polled the E D 1 Queue directory

for EDR image product so‘itlinks. If found, the softlinked
file was ingested by cIient software called the Java EDR
Display Interface (JEDI) for image display onto a mer-
specified monitor. This stream was vital to quick visual
quality checking of the image EDRs.

5.6 Error Handling and Messaging
As part of each stream, messages and returned error

print statements were generated at both the application
program level and the Pipeline glueware level into a singIe
logging text file. There was some inconsistency in the
manner by which the application programs returned low
level error status, so the Pipeline was engineered to auto-
categorize application enror types into broad themes and
issue additional messages to simplify interpretation.

The tog file was set in auto-scroll mode on the
workstation monitors far visual monitoring, but it’s
verbosity made for difficulties in readily interpreting the
information in real time. Instead, the greater value found in
the log file came with the fact that it provided a permanent
record which was searchable at a more leisurely pace in
times of anamoly investigations.

5.7 Extensibility
The Unix-based scripting approach to the PipeIine

design provided for quick “plug-in“ of new capabilities that
became necessary due to growing requirements during
mission operations.

One example of this PipeIine extensibility came
during the extended mission, when several new image
products were envisioned that would make operations
easier. As Spirit climbed into the Columbia HilIs and
Opportunity descended into Endurance Crater, the long-

term planners realized they needed to be able to visualize
the local slope around each respective rover [3] . Power
constraints and dusty solar panels led to a need for a
product showing locations where solar energy would be
maximized. Spirit’s ailing right front wheel motivated a
product showing climb/descent. All of these were easily
implemented using Combinations of existing or sightly
modified applications.

As another example, the science team used a hybrid
version of the Pipeline specially developed to create
photometry cubes [6]. This entailed adding yet: another
incompatible type of application - in this case programs
written in IDL (Interactive Data Language, from Research
Systems) and very different parameters for many of the
standard processing steps. These changes were also readily
incorporated in a relatively short time.

In both cases, integration of the new capabilities into
the Pipeline was fast and easy. Within the Pipeline script,
all application processes were spawned by the same
function, so it was simply a matter of adding the command
line call to the new application program as a new module
block in the code.

6 Operation
6.1 S tartup/S hu tdown

The Pipeline script was invoked in the Unix shell
though command line execution by a single hunian
operator. Processing behavior was controlled via
specification of command line parameters.

Although the Pipeline was designed to run
autonomously for long periods of time (many days),
procedurally, there were advantages t o managing the
processing sessions in smaller increments. The resulting
policy was startup/shutdown of the Pipeline once per Sol,
which allowed the operator to maintain the size and number
of the temporary working files and directories under limits
where NFS performance became noticable.

6.2 Product Verification

6.2.1 GUI-based Product Tracking
Given the complexity of the Pipeline processing and

the quantity of data passing through on a daily basis, the
need for a means to visually track the progress of
processing at the product unit level became apparent. A
system called “Product Update Tracking Tool” (a.k.a.
PUTT) was created that presented the Pipeline pilot with a
web page which visually indicated (via color) the
completion status of each image data product.

PUTT was implemented using a small C program and
a Perl script outside the Pipeline script and allowed for
quick assessment of each product’s status by: a) denoting
the completion state of each pertinent application program
in a graphical spreadsheet (GREEN for success, RED for

failure), b) in the cases of failures, isolating and extracting
the error statements from the application process logs, and
e) providing pop-up window viewability into the log
snippets for that product.

As the Pipeline started pTocessing a new EDR, the
PUTT program created a small XML “token” file into a
temporary Sol directory on the OSS. This file was
uniquely named using Spacecraft Clock (SCLK) and
Spacecraft Identifier (SCID). As the EDR matriculated
through various derived product application processes in
the Pipeline, the contents of the token file were updated
with status information that included: a) the name of the
application program, b) the return status of the program’s
execution, c> the time of program completion, and d) the
name of the program’s processing log file pertinent to the
EDR.

The Perl script, running every few minutes, collected
all unique SCLK tokens from the current Sol and created
the web page representation of the status information. The
token file contents were concatenated into a single XML
file and then converted to HTML by passing the XML
through an XSLT filter. If errors were indicated in the
token file the script created a second web page containing
the appropriate section of the processing log file. Because
of project constraints limiting web servers on the flight
LAN, the HTML files were copied to a remote web server
and were then viewable via a web browser.

6.2.2 Text-based Product Tracking
The use of temporary directory queues to collect file

softlinks allowed a simple tool to be written that provided
insight into the processing. It was not a GUI
representation, but textual, developed as a Perl script to
count the number of files in each directory and report as a
text listing every 10 seconds or so. Optional parameters
were added to control the listings by Sol.

6.3 Private Pipeline Mode
Nominally, the Pipeline placed its output data

products into the OSS directory structure, where customers
would “shop” for standard data products in subdirectories
named by Sol, instrument, and product type. However,
there often arose the need to create non-standard data
products for special purposes at the request of a customer.
These non-standard products could not be copied into the
OSS as it would affect all the other customers who were
expecting standard data. Simple adjustment of the Product
Delivery stream created a “private” mode of the Pipeline
that could deliver products into user-specified directories
without touching the OSS. This was also extremely useful
for MIPL analysts to test new processing methods.

7 Conclusions
The real test of any system is how well it performs in

an actual operational setting. The Pipeline has been used

daily for over 400 Sols on two rovers, processing in excess
of 80,500 EDRs and 750,000 RDR's as of this writing.
While there have been anomalies, none have been serious,
and we have met our requirements. The Pipeline has
proved itself to be robust and flexible, adapting to a
changing mission environment.

5th International Symposium on Reducing the Cost of
Spacecraft Ground Systems and Operations, Pasadena, CA,
2003.

While the MIPL Pipeline will not change
significantly at this point, it is expected that some
derivative of it will be used in future missions. Topics to
investigate in the future include more fine-grained
parallelism, better product tracking, use of a database
(possibly optionaI) to help manage processing queues, more
sophisticated data-flow options, and a more modular,
plugin-style approach to application integration.

Acknowledgements
The work described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration.

References
[l] R.G. Deen, D.A. Alexander, J.N. Maki, "Mars Image
Products: Science Goes Operational", Proceedings of the
8th International Conference on Space Operations
(SpaceOps), Montreal, Canada, 2004.

[2] R.G. Deen, J.J. Lorre, "Seeing in Three Dimensions:
Correlation and Triangulation of Mars Exploration Rover
Imagery", submitted to 2005 IEEE International Conf. on
Systems, Man, and Cybernetics, Waikoloa, HI.

[3] C. Leger, R.G. Deen, R.G. Bonitz, "Remote Image
Analysis for Mars Exploration Rover Mobility and
Manipulation Operations", submitted to 2005 IEEE
International Conf. on Systems, Man, and Cybernetics,
Waikoloa, HI.

[4] R.G. Deen, "Cost Savings through MuHimission
Code Reuse for Mars Image Products", Proceedings of 5th
International Symposium on Reducing the Cost of
Spacecraft Ground Systems and Operations, Pasadena, CA,
2003.

[5j J.R. Wright, A. Trebi-Ollenu, J. Morrison, "Terrain
Modeling for In-Situ Activity Planning and Rehearsal for
the Mars Exploration Rovers", submitted to 2005 IEEE
International Conf. on Systems, Man, and Cybernetics,
Waikoloa, HI.

[6] J.M. Soderblom, J.F. Bell, R.E. Arvidson, J.R.
Johnson, M.J. Johnson, F.P. Seelos: "Mars Exploration
Rover Pancam Photometric Data QUBs: Definition and
Example Uses", Eos Trans. AGU, Vol 85 No 47, 2004.

[7] T. h a n g , "Component Architecture: The Software
Architecture for Mission Requirements", Proceedings of

